An Observation-based Model for Fault Localization

R. Abreu P. Zoeteweij A.J.C. van Gemund

Delft University of Technology

WODA, July 2008

1 / 21

Rui Abreu (TU Delft)

Observation-based Model

WODA, July 2008

Motivation

Motivation

Situation

- SW Debugging is overly expensive
- Many debugging tools/approaches
- Model-based (MBD)
- Dynamic/statistics-based (SFL)

Rationale

- MBD needs a model as input which is often not available
- SFL cannot distinguish components with the same execution pattern

In this presentation, a new novel approach...

- ▶ Dynamic information to extract a model ▷ inspired by SFL
- ► Candidates ranked using Bayes' update ▷ inspired by MBD

Observation-based Model

Concepts and Definitions

Observation-based Model

Evaluation

Synthetic Experimental

Conclusions & Future Work

- (E

Components, Runs, Program Spectra...

- \blacktriangleright A program under analysis comprises a set of ${\bf M}$ components
 - Statements in the context of this paper
- ► The program is executed using **N** test cases (runs)
- Component activity is recorded in terms of program spectra
 - program spectra = abstractions of program traces
- Program spectra is a set of counter or flags for each component
 - ▶ In this presentation, *statement-hit spectra* is used

Observation Matrix

- Row $O_{i\star}$ indicates whether a component was involved in run *i*
- ▶ Column $O_{\star j}$ indicates in which runs component j was involved
- > The error vector *e* indicates whether a run has failed or passed

Input to the debugging method is only O

Concepts and Definitions

Observation-based Model

Evaluation

Synthetic Experimental

Conclusions & Future Work

∃ → < ∃</p>

Model Generation

- Compile the observation matrix into propositional logic
 - More specifically, conjunctions of disjunctions
- Suppose the following source code and program spectra

$$(\neg h_1 \lor \neg h_3) \land (\neg h_2 \lor \neg h_3)$$

Solve the Model

Compute the minimal hitting set

- NP complete
- TUDelft heuristic: STACCATO
- The solution for the example's model

$$(\neg h_1 \lor \neg h_3) \land (\neg h_2 \lor \neg h_3)$$

$$\bigcup$$
 $(\neg h_3) \lor (\neg h_1 \land \neg h_2)$

Thus, either c₃ is faulty or c₁ and c₂ are faulty

Ranking Diagnoses

- Set of diagnosis candidates can be large
- Bayes' update to compute probabilities

$$\Pr(d_k | obs) = \frac{\Pr(obs | d_k)}{\Pr(obs)} \cdot \Pr(d_k)$$

where

•
$$Pr(d_k) = p^{|d_k|} \cdot (1-p)^{M-|d_k|}$$
 and, e.g., $p = 0.01$

$$\Pr(obs|d_k) = \begin{cases} 0 & \text{if } SD \land obs \land d_k \models \bot \\ 1 & \text{if } d_k \to obs \land SD \\ \varepsilon & \text{if } d_k \to \{obs_1 \land SD, \dots, obs \land SD, \dots, obs_k \land SD \} \end{cases}$$

$$\varepsilon = \left\{ egin{array}{c} g(d_k)^t & ext{if run passed} \\ 1 - g(d_k)^t & ext{if run failed} \end{array}
ight.$$

Ranking Diagnoses, ctd'ed

g estimates the probability that components in d_k produce a correct output

$$g(d_k) = rac{\displaystyle\sum_{i=1..N} [(\bigvee_{j \in d_k} o_{ij} = 1) \wedge e_i = 0]}{\displaystyle\sum_{i=1..N} [\bigvee_{j \in d_k} o_{ij} = 1]}$$

Back to our example...

$$\begin{array}{c|c}
 d_k & \Pr(d_k) \\
 \hline
 {3} & 0.995 \\
 {1,2} & 0.005
\end{array}$$

Meaning that, one would start by inspecting component 3

10 / 21

Concepts and Definitions

Observation-based Model

Evaluation Synthetic Experimental

Conclusions & Future Work

Experimental Setup

Study the effects of the following on the diagnostic accuracy

- Number of Failing Runs
- Behavior for Small Number of Runs
- Behavior for Large Number of Runs

Observation matrices built based on

- Probability a component is touched r
- Probability a faulty component fails g
- Fault cardinality C

Evaluation Metric: Wasted Effort

Rui Abreu (TU Delft)

WODA, July 2008

Optimal N^* for perfect diagnosis (r = 0.6)

g	0.1					
С	1	2	3	4	5	
N*	13	31	90	120	250	
N _F	5	19	71	111	245	

g	0.9						
С	1	2	3	4	5		
N*	200	300	500	1000	1700		
N _F	12	36	84	219	459		

Concepts and Definitions

Observation-based Model

Evaluation Synthetic Experimental

Conclusions & Future Work

Experimental Setup

Programs

- Siemens set of programs
 - 7 programs with several (single fault) faulty versions
 - O(100) LOC
 - O(1000) test cases
- GNU gcov to obtain the observation matrix

Evaluation Metric

Percentage of code that needs to be inspected

$$Effort = \frac{\text{position of fault location}}{LOC}$$

16 / 21

Experimental Results

Cumulative Percentage of Located Faults

Concepts and Definitions

Observation-based Model

Evaluation

Synthetic Experimental

Conclusions & Future Work

Conclusions

Fault localization approach

- Uses abstraction of program traces to generate a (dynamic, sub-) model
- The set of traces for pass/fail executions is used to reason about the observed failures
- Set of candidates also contains multiple-fault explanations
- Theoretically, given sufficient test cases are available, this approach will reveal the true faulty state
- Results using the Siemens set have shown that our approach outperforms other state-of-the-art approaches

Future Work

- Study the diagnostic performance for multiple-fault programs
- Study the possibility of engaging several developers to find the faults
- Reducing the hitting set algorithm complexity
 STACCATO is under development
- Apply to other (real) programs (e.g., space)

20 / 21

?

For more info:

- http://www.st.ewi.tudelft.nl/~abreu
- email: r.f.abreu@tudelft.nl